
Short Course on Partial Differential
Equations with deal.II

Play Time

Daniel Arndt

IWR, Universität Heidelberg

April 09 – 13, 2018



deal.II
Course

Daniel
Arndt

Goals

Goals of this course
Learn about the software library deal.II
understand practical aspects of finite element software
use the library deal.II for own computations
Build, document, and present a software project
solve nonlinear, time-dependent and coupled PDEs
use advanced tools in software development (IDEs,
debuggers, ...)
Not:

Teach the Finite Element Method (see 11MMAV0277
Numerical Methods for Partial Differential Equations)
Learn how to program in C++ (but I am happy to help!)



deal.II
Course

Daniel
Arndt

Topics

Topics
basics of FEM, structure of FEM codes, algorithmic
aspects
modern tools for software development (IDEs,
debuggers, . . . )
some C++ topics (templates, . . . ) used in large software
projects
iterative solvers and preconditioners
coupled PDEs, block systems
nonlinear problems
time discretization
parallel computations
software engineering practices



deal.II
Course

Daniel
Arndt

Interacting

For you
Join the mailing lists
Ask questions
Just read and learn
Become a contributor
Smallest changes are welcome! (find a typo?
Documentation of a function lacking? Implement a small
feature?)
Cite deal.II if you use it



deal.II
Course

Daniel
Arndt

Play Time - step-1 I

1 Create an image of an L-shape domain (add another
function to step-1).

2 Refine the mesh in 1) adaptively around the re-entrant
corner.

3 Create a helper function that takes a Triangulation and
outputs the following information: number of levels,
number of cells, number of active cells. Test this with the
(now three) meshes.

4 Output the mesh as an svg file instead of eps. Open it in
a browser to display it.

5 Create a 3d cylinder and refine it 3 times (globally). Try
outputting to gnuplot format too.



deal.II
Course

Daniel
Arndt

Play Time - step-1 II

6 Bonus: create a 3d unit cube and create a loop that in
each step a) refines globally once, b) outputs the
number of active cells, c) the amount of memory in
megabytes required to store this mesh (look for a
function called memory consumption()). Do this for 6
global refinements first. How many refinements can you
fit into memory of your computer (typing free in the
terminal tells you how much memory you have)?



deal.II
Course

Daniel
Arndt

Play Time - step-2 I

1 How does the pattern change if you increase the
polynomial degree from 1 to 2 or to 3?

2 How does the pattern change if you use a globally
refined (say 3 times) unit square?

3 How many entries per row do you expect for a Q1
element (assuming four cells are around each vertex)?
Check that this is true for the mesh in b) (look for row
length and output them for each row).
How does that change with a different mesh?
Can you construct a mesh (without hanging nodes) that
has a row with more entries?

4 Print all entries for row 42 for the original renumbered
sparsity pattern.

5 Are these patterns symmetric? Why/why not?



deal.II
Course

Daniel
Arndt

Play Time - step-2 II

6 Compute and output statistics like the the number of
unknowns, bandwidth of the sparsity pattern, average
number of entries per row, and fill ratio.

7 Bonus: figure out a way to write the sparsity pattern into
a file that you can either read in using Matlab or write it
as a .PPM image file.


